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Abstract. We consider the behaviour of an Ising ferromagnet obeying the Glauber dynamics under
the influence of a fast-switching, random external field. After introducing a general formalism for
describing such systems, we consider here the mean-field theory. A novel type of first-order
phase transition related to spontaneous symmetry breaking and dynamic freezing is found. The
nonequilibrium stationary state has a complex structure, which changes as a function of parameters
from a singular-continuous distribution with Euclidean or fractal support to an absolutely continuous
one. These transitions are reflected in both finite size effects and sample-to-sample fluctuations.

1. Introduction

The last decade has seen many advances in the theory of dynamic systems, both from a
mathematically rigorous, and from a physically oriented heuristic point of view. Most of these
results have been obtained for systems with few degrees of freedom. Attempts at handling
nonequilibrium stationary states of systems with macroscopically many degrees of freedom
have been made only recently [1-3]. In this paper we propose a general theoretical framework
for strongly, randomly drivestatistical physical systems and apply it to the Ising model in a
random, dichotomic driving external field.

The resulting dynamics have many qualitative similarities with earlier work on one-
dimensional Ising chains in a binary random field [4]. However, while the ‘dynamics’
defined in [5] is a one-dimensional map generated by the iteration of noncommutirgy 2
transfer matrices, in the present case the map ‘lives¥idifnensions. Nevertheless, the main
mechanism leading to chaotic behaviour and strange attractors is in both cases related to the
competition between two (or more) fixed points (or limit cycles). In this respect, the randomly
driven Ising model (RDIM) has many intriguing aspects which—somewhat unexpectedly—can
be handled both analytically and numerically with methods developed earlier for the random
field Ising model [5-11].

The Ising ferromagnet in a time-dependent sinusoidally oscillating field has received
recently a lot of attention, from both a theoretical and experimental point of view. On the
theoretical side, Rao, Krishnamurthy and Pandit [12] have presented aNaggpansion of
the cubic @QN) model in three dimensions and calculated the critical exponents related to the
area of the hysteresis loop. The underlying dynamic phase transition has been then studied
within both mean-field [13] and Monte Carlo simulations [14-17]. The theory presented in
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this paper is a more detailed analysis of the generalization of these ideas for the case when the
external field is subject to a chaotic dynamics and/or is a random variable [18].

Besides the theoretical interest in describing such systems, we believe that many
of our predictions can be tested with recently developed experimental techniques.
Dynamic magnetization measurements have been recently performed in ultrathin
Au(111)/Cu(0001)/Au(111) sandwiches or epitaxial Co/Au(111) films [19-21]. Similarly,
hysteresis measurements on the ultrathin film Co/Au(001) [22] indicate that l7gltvese
systems undergo a dynamic phase transition belonging to the Ising-universality class. More
relevant to our theory, the time evolution of magnetization clusters can be optically recorded.
The typical relaxation times range from minutes to a few seconds with increasing field
amplitudes [21]. This relatively slow relaxation rate allows for a simple experimental
realization of the randomly driven external field.

Ultrathin films are potential candidates for magneto-optical storage devices and our
approach might be relevant especially in this respect. At well-chosen control parameters
the stationary magnetization distribution of the RDIM displays several well separated peaks.
Thus, when driven appropriately, such materials can store locally more than the two values
typical for an equilibrium ferromagnetic system.

This first paper is organized as follows: the basic assumptions and the general theoretical
formalism are introduced in section 2. The mean-field theory is presented in full detail in
section 3. In this approximation the paramagnetic—ferromagnetic stationary phase transition
becomes first order. The phase boundary is obtained analytically. The average magnetization
is nonanalytic (jumps) at small driving field values and therefore the usual mean-field approach
fails. Nevertheless, the phase transition is related to a spontaneous symmetry breaking and a
pitchfork bifurcation of the magnetization distribution. On the other hand, the analytical nature
of the stationary magnetization distribution changes from singular continuous with Euclidean
or fractal support, to absolutely continuous along analytically computed boundaries. Such
changes are directly connected to finite size effects of the free energy and the multifractal
spectrum of the magnetization measure. Close to the para—ferro phase boundary the small
magnetization region close ta ~ 0 becomes a repellor, inducing ultracritical slowing,
related to type-I intermittency. A short summary of the main mean-field features is presented
in section 4.

A subsequent paper considers the randomly driven Ising model in one and two dimensions.
Although the one-dimensional case cannot be fully solved, many interesting exact results can
be derived. We find a line of second-order phase transitiofisat0 between a disordered
(driven paramagnetic) and an ordered (ferromagnetic) phase. Along this line the stationary
critical exponents change continuously as a function of the driving field strength. However,
the dynamic critical exponent remains unchangeg; 2. As a function of temperature and
of the driving field strength, the nonequilibrium stationary state might display multifractal or
‘fat’ multifractal character. Hence, the generalized free energy is characterized by anomalous
fluctuations related to the existence of a multifractal spectrum. We also performed Monte Carlo
simulations on a square lattice. Many features of the mean-field dynamics are shown to survive
the strong fluctuations characteristic of two-dimensional systems. However, in contrast to the
mean-field approach, the two-dimensional model also displays an interesting spatial structure
related to droplet dynamics. Comparisons between mean-field theory and two-dimensional
results are systematically presented, including some preliminary results for hysteresis.
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2. General formalism

2.1. The master equation

Consider a spin system = (s1, 52, ..., sy) in contact with a thermal bath (phonons). Let
us denote bytspin-fiip the characteristic time of the spin—phonon interactions, antigyhe
slowestrelaxation mode of the spin system. Rggin_ip < Tsysthe system is itocal thermal
equilibrium.

Our basic assumption is that the time evolution of the spin system can be described by a
time-dependent joint probability distributio® ({s;}; z). From a dynamic point of view, one
can consider this distribution as an average over all microstate initial conditions satisfying
given macroscopic constraints. The rigorous definition of this basic assumption is related to
the existence of Markov-partitions in (hyperbolic) dynamic systems [2, 3] and goes beyond
the scope of this paper.

The distribution| P(¢)) obeys the master equation:

|P(1)) = —Lpw|P@)) 1)

where the operatofg(,) describes the outflow (inflow) probability from (into) stdkg} into

(from) other states, as prescribed by the dynamic rules. The dependence on the field is made
explicit because in general |, £5] # 0 for B # B’. Assuming a constant field = B, and
ordering the eigenvalues éfgo asio =0 < |Aq] < -+ < |Apv_1], One hagsys = A1~ The

ket vector| P (t)) can be expressed in the spin-configuration basi®@s}; r). Alternatively,

it can be parametrized as

N 2N
P(s;}; 1) = ZiN|:1+Zmisi +Zc[,js,-sj +] = %(Znansj + 1) (2
i=1

i#j a=1  jea
where ther, (¢) are the average values of all possible@oducts of spins
ma(t) = ([ [s)) =Y PUsikin ] s (3)
jea s jeEa

Hence, |P(¢+)) can be expressed as d'-Bimensional normalized vector in the
space of all possible spin configurations, or in the space of spin-produckstas=
({s1), ..., {sn), (s152),...). Note that when expressing the kinetic Ising model Liouville
operator in terms of Pauli matrices [23] this orthogonal transformation corresponds to the
exchanger® < o~.

In general, the Liouville operatdtis not symmetric but can be expanded in a bi-orthogonal
basis formed by its rightr,,), and left,(l,|, eigenvectors((,|ru) ~ 8m.n):

2V 1
L= 1rhallal. 4)
n=0

It is worth noting that since & is a stochastic operator, we hayig|Z = O(lo|, where
(lol = (1, 1,...,1) in the spin-configuration basis. The scalar prodigito) = Z delivers
the equilibrium (stationary) canonical partition function.

The time-dependent fiel@(¢) is usually a deterministic one-dimensional map, e.g. a
harmonically oscillating field. However, if the deterministic map is chaotic, the field becomes
a random variable. In what follows we assume that the external Bietda random variable
sampled identically and independently from the symmetric distribytid = o (—B).

Lettp be the average sampling time of the field distribution. As longas> tsysthe spin
system has enough time to relax to global thermal equilibrium. This is the case of equilibrium
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statistical mechanics and normal fluctuations. The situation can be very different if the field
can switch abruptlye .., ~ 5 B is large) andrsys > 5. The system does not have enough
time to relax to equilibrium and the stationary state is determined by the external random field.
As discussed later, such a situation is experimentally realizable.

Now let us assume that the field is sampled fro(®) at time intervals of lengthg,

B(1) = Bp(B) )_ Ot —nts)O((n +Dp —1). (5)
n=0

We can integrate equation (1) exactly fregn; = (n — Dt tor fore,_1 <t < t,:

|P({s;}: 1) = € LoD P ({53} 1,0) (6)
whereB(t,_1) is the field instance sampled at time;. Forr = lim._,¢(¢, — €) one obtains
|P({s:}: 1)) = € £200™ | P({s;}: 1y-1)). (7)

Since in our case the low lying eigenvaluesof the Liouville operatoi. satisfyi, s < 1,
by expanding the exponential in first order one obtains the discrete ‘coarse grained’ master
equation

[P ({s:}; ) — | P({si}; ta—1))
B
which describes correctly only the long-time behaviour of equation (1). Short-term effects
due to the larger eigenvalues®have already relaxed at the timescaje This approximated
form of the master equation is used in all further developments.
One can regard equation (8) as defining the discrete dynamics governing the probability
distribution| P ({s;}; 1,,)).

= —Lpg, I PUsi); tao1)) (8)

2.2. The driving field distribution

As already mentioned, the external field might be distributed according to the invariant measure
of some chaotic one-dimensional deterministic map. In other applications, the field can be
Poisson- or Gauss-distributed. In what follows we restrict ourselves to the binary distribution

p(B) = 15(B — Bo) + 15(B + By). 9

Many of our results can easily be generalized to arbitrary continuous distributions. Other
results, in particular those concerning the stationary state phase diagram and the critical
behaviour, depend strongly on the discrete character of the choice (9). Equations (8) and
(9) map our problem into an iterated function system (IFS) [24]. As long as we deal with a
finite system of spins, the mathematical results (including the collage theorem) developed by
Demko and Barnsley and subsequent work on IFS apply to randomly driven spin models as
well. However, from a statistical physical point of view, the interesting things hapfien
taking the thermodynamic limit.

2.3. The invariant measure

As usual in the theory of dynamic systems, one can ask what is the invariant measure induced
by the dynamics (8), see, for example, [25]. [®t7) denote the invariant density related to
the dynamics equation 8. It satisfies the Chapman—Kolmogorov equation:

o) = / i Py () f dB p(B)SG — e L) = P, (%) (10)
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where K denotes the Frobenius—Perron (FP) operator. PhysicBll7) describes the
nonequilibrium stationary state induced by the master equation dynamics. Note that we used
above the spin-product basis. An orthonormal transformation of the basis will lead to a different
but equivalent FP operator, the transformation’s Jacobian is unity. Again, this is true only for
finite systems.

If one is interested in the stationary expectation value of some spin obseA@klp one
must perform two averages, the ‘thermal’.) and the ‘dynamic’ average [.]:

A({sih) = [(A)] (11)

where the ‘dynamic’ average.[] is taken overP, ando(B).

The ‘thermodynamics’ of such driven systems can be computed from the generalized free
energy. This is related to the largest Lyapunov exporenf the dynamics as-F = A.
Consider along dynamic trajectory consisting’af; sampling points. The Lyapunov exponent
is defined as

A= Tlim iT In Tr{e fentngLoa-ots g Luyay (12)
—0o0 Tp

whereB(n) = B(t,) is distributed according to equation (9). The same result can be obtained
by iterating some generalt initial unity vectn) as
p1) =€ 5™ po)  ar=/{palpa)

1 —ﬁBzTB
Ipz)za—1 @ p1) az = /{p2lp2)

For largen the vectorg p,,) will be distributed according t®; and up to Q%) corrections the
Lyapunov exponent can be expressed as

A= /dpy (ﬁ)de p(B)3In leLomsz. (13)

For a constant fielg (B) = §(B — Bo) and the stationary distribution &, (7) = 8 (7 — 7eq),
whereseq are the Boltzmann-distribution averaged spin-products. Thereferéso™ 74| =
({lolro))? = Z?, where we have used that, is the right eigenvector ofBO with eigenvalue
0. We recover the usual definition of free energy by multiplyingvith —kpT .

This generalized free energy might display anomalous fluctuations related to the
multifractal spectrum of the stationary distributiBg, as will be shown later for the mean-field
theory.

2.4. Dynamical properties

In order to consider thdynamicalproperties of randomly driven systems one has to solve—
in full analogy to the theory of one-dimensional maps—the right eigenvalue problem of the
Frobenius—Perron operator:

KRy = smRom. (14)

The largest magnitude eigenvalue is ose= 1. The right eigenvectoR, is nodeless and
real: it corresponds to the stationary st®g,= P,. Form > 0 the eigenvectorg,, (x) satisfy

f d7 Ry (7) = 0. (15)

T This vector should not fall into any invariant subspaceath éigo operators.
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In addition to the right eigenvector,,, the operatok might also have a set of null functions of
different orders. They correspond to zero eigenvaluésiofvhereg is an integer (the order).
These eigenfunctions, however, do not contribute to the relaxation of the initial probability
distribution towardsp;.

In analogy to the usual transfer matrix theory, the relaxation of the probability distribution
and of the time-dependent correlation functions are determined for asymptotically long times
by the second largest eigenvalyyeand its eigenfunctiom ;.

Although at this stage the formalism looks rather involved, it is a straightforward extension
ofthe methods developed for low-dimensional dynamic systems. We consider nextthe simplest
possible example, an Ising model in a random binary external field, equation (9). In this
case, many interesting stationary and dynamic properties can be obtained analytically, or with
numerical methods no more complex than those used for one-dimensional maps.

3. Mean-field approximation

3.1. The mean-field map

Consider an Ising model defined on Ardimensional simplex, such that all spins are nearest

neighbours:
J
E=_N ZS,‘SJ‘—,[LBB(I)ZS,‘. (16)
i#j i
J is normalized so that the energy is additive angis the Bohr magneton. A
Let u; := (s1,...,—s;,...,Sy). We may describe the Liouville operatdrwith the
transition ratew(i;|it) in the Glauber form [26]
. 1 K
W(,U,,‘|M)Zz|:l—sitanh<ﬁ ;S‘j"'H)} (17)

whereg = 1/kpT, K = BJ, H = BupB anda sets the time constant. Applying equation (8)
one obtains, after performing the thermodynamic liMit> oo:
m(t+1) =tanh(Km(t) + H(t)). (18)
Time is measured in units ef. The field distribution equation (9) leads to the one-dimensional
map
m(+1) = tanh(Km(t) + Hp) W!th probab?l!ty%
tanh(Km(t) — Hp) with probability 5.
Note that in the thermodynamic limit the moments of the magnetization do not couple
with higher-order correlation functions and the methods worked out previously for the one-
dimensional random-field Ising chain can thus be applied directly.
Since in the stationary state, equation (18){ + 1)] = [m*(r)], using equation (18) and
simple algebraic manipulations we obtain thatkittemoment of the stationary magnetization

is given by
K v+h O\ .
[m]_|:<l+vh>:| k=1,2,... (20)

wherev = tanh(Km) andh = tanh(H).

At high temperature the system is in the disordered, paramagnetic phase, in which case
all odd moments of the magnetization vanigtssuminghat the free energy is analytic im],
the critical temperature is obtained by expandingip first order in Q[42]):

[m] ~ K (1— h3)[m] (21)

(19)
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and neglecting/i?], ¢ = 3 and higher odd moments (which should scale §2%])). In the
usual mean-field scenarie] = 0 in the paramagnetic phase and the coefficient vanishes at
the transition point to the ferromagnetic phase:

1. 1+m'
HYD = Zn
¢ 2 1-mt

(22)

wherem' = i,/KT*l for K > 1. Using a simple geometric argument we will show below

that this analyticity assumption fails and that the phase transition is actually first order. For
the second moment one obtains

hg
1— K2(1— 4h3+3n))
where we have omitted @»*]) and higher even moments. The pole of this expression is also

related to the phase transition, which is discussed below. Third- and fourth-order expansions
of [m] and [n?] read

[m?] ~ (23)

K*(hZ — hd)
= (K1) - s O (24)
1— K3(1— 10h2 + 198 — 10n%)
and
hAK*(2 — 17h2 + 30h% — 1518
[m?] ~ (hg_ oK« 0 L~ 0 5 ) (1— K2(1— 4h% + 3hg)
3— K4(3— 60h2 +212h% — 26005 + 10519)

, K82~ 17hg + 30§ — 1545) (6hg — 16hg + 10h5) )—1 (25)

3 — K43 — 60h3 +212n% — 260§ + 105:5)

respectively. A high-order expansion of the moments along these lines can be easily obtained
using algebraic manipulations programs but will not be presented here.

3.2. The stationary phase diagram

In principle, there are at least two different mechanisms for a phase transitions in the stationary

state described by, (m). The first one corresponds to spontaneous symmetry breaking leading

to a continuous phase transition. In this scenario the stationary distribution, which at high

temperature is a function of the even magnetization moments@iy,) = P;(—m), becomes

degenerate at certain parameter valiiés Hy} and the odd subspac®,(m) = —P,(—m),

contributes as well. More precisel,(m) = Rg is alwaysa nodeless even function of.

The field symmetry is spontaneously broken when the largest odd-subspace eigenvalue of

the Frobenius—Perron operator equation (i4);> 1. Therefore, the largest eigenvalue is

degenerate and the corresponding eigenvector is an arbitrary linear combingtigmpaind

Ri(m) = —R1(—m), leading to a non-vanishing order parameter. Close to but above the

transition point the relaxation time of the stationary distribution diverges&s- 1 —s;. We

find no evidence for such a mechanism, at least not in mean-field approximation. Instead, the

phase transition is related to a bifurcation of the stationary magnetization distribution.
Consider the map equation (19) at high temperature, a situation shown in figure 1. The

arrows indicate the direction of the flow. The competition between the two stable fixed points

leads to chaotic behaviour and the displayed stationary distribution. To approximate the

distribution, we tracked the evolution of 1000 (random) initial valueszo$ubject to the

map for 1000 iterations. At low temperaturgs & 1) and large fields one has the situation

depicted in figure 2. Note the possible intermittent behaviour close+o0. If we decrease

Hy the map can ‘pinch’ tangentially the(t + 1) = m(¢) diagonal, creating thus one new
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Figure 1. Mean-field map and the stationary distribution in the paramagnetic pkase(.4 and
Ho/K = 0.21).
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Figure 2. Mean-field map and the stationary distribution for= 2.0 andHp/K = 0.5. The map
shows that for strong driving fields the system remains in the paramagnetic phase even below the
equilibrium critical temperature.

unstable fixed point. This situation is shown in figure 3. Decreasing the field even further, we
have the map of figure 4, whefe has bifurcated into two stable and one unstable disjoint
distributions. For further use let us denotery, m,, andm3 the possible fixed points of the
equationm = tanh(Km + Hp) in descending order. The line of the critical figtfi can be
calculated from the condition that at the new fixed point the map is tangential (‘critical map’,
see [27]) and leads after elementary calculations to

1 1-—mt
— n —_—
2 1+mt
wherem’ = my = ms.

From figures 2—4 it is evident tham| > m' and except forH, = 0 the magnetization
jumps at the phase transition. We believe that this feature is due to the discrete character

of the binaryp(B) distribution. Thus, the RDIM provides an example of a spontaneous
symmetry breaking leading to a first-order phase transition. The mechanism behind this first-

—

H = +Km (26)
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Figure 3. Same as in figure 1 but close to the critical field valie=£ 2.0 andHy/K = 0.266).
Two disjoint distributions are created around the stable fixed points, a repellor in the middle.
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Figure 4. Mean-field map and the stationary distribution in the ferromagnetic pliase 2.0 and
Hyp/K =0.1).

order transition is very different from that of equilibrium systems and is related to a tangential
bifurcation of the stationary distribution. The corresponding phase diagram is shown in the
upper part of figure 5. Very recently, Acharyya [28]mericallysolved the RDIM mean-field
equations for a field uniformly distributed in the internvdl(z) € [—Hop, +Hp]. His results

seem to indicate a continuous phase transition. However, from the continuum of maps (18)
only the limiting ones att Hy determine the critical field and the bifurcation of the stationary
magnetization distribution occurs at the same valije implying again a first-order phase
transition.

3.3. The multifractal regime

Some highly unusual properties of the RDIM are related to the multifractal spectrum of
the stationary state. Following the notation introduced in [29], one can identify a singular-
continuous density with fractal support (SC-F) in both the paramagnetic and the ferromagnetic
phase. When a gap opens between the upper and the lower branch of the map the invariant
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Figure 5. Mean-field phase diagram. The upper p@ > 0) shows the border between the
para- and ferromagnetic phase. In the lower pa&fg < 0) the regions denoted by SC-F and
SC-E correspond to a singular-continuous invariant density with fractal and Euclidean support,
respectively, while in the AC-region the density is absolutely-continuous. Note that the diagram is
actually symmetric infp.

distribution has a fractal support with the capacity dimensign< 1. The border of the
(SC-F) region is given byXm; = Hy in the paramagnetic phase akdm1 + m3) = 2Hy
in the ferromagnetic phase. In the region betwéggn= 1 andd,, = 1_ the distribution is
singular-continuous with Euclidean support (SC-E) [29]. Using the ideas developed in [6],
we obtaind,, = 1_ if K(1 — mi) = % The density distribution is absolutely continuous
(AC) if all generalized dimensions [30] equal odg,= 1,(¢ =0, ..., 00). These results are
graphically summarized in the lower part of figure 5.

In order to compute the generalized free energy, equation (13), one can uggl that
80.n Z{s,-} Peq({si}). Note that the left eigenvectdly| of thelp operator corresponds to a sum
over all spin configurations and is therefore independe.dfvhen inserting in the product
within the trace of equation (12) the spectral decompositions of different noncommuting
operatorsl s, the ground-state contributions decouple from the higher level contributions.

Hence, in mean-field approximation the free energy is given as expected by
—BF =N / dm Py (m)% In 2[cosh2Km) + cosH2Hp)]. 27)

This integral can be approximated aba¥gby expanding the integrand in even moments of
the magnetization (see equations (23) and (25)). The fluctuations of the free energy depend
on the (multifractal) structure of the stationaPy(m) distribution.

Strictly speaking, equation (27) is the average free energy. When considering a finite
system or along but finite dynamic trajectory, the free energy is normally distributed. As shown
in [8] for the one-dimensional random field Ising model, in the SC-F region the multifractal
spectrum can be directly related to the second cumulant of the free energy distribution. The
arguments presented in [8] also apply to our case: a broad multifractal distribution leads to
large free energy fluctuations.

In the SC-F regime one can obtain additional information about finite-size free-
energy fluctuations from the generalized dimensions (Legendre-transform of the multifractal
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1] T T T

Figure 6. Lower part of the mean-field map for

H > H.. lteration along the upper branch is type |
intermittent while the lower branch brings the iteration
m to the starting point in one step.

spectrum). We applied the methods developed in [6-8, 11, 31] and computed numerically the
multifractal spectrum of the stationary distribution.

Another interesting observation is that these isolines cannot directly cross into the
ferromagnetic region: close but above the phase transition there is no positive gap (see figures 2
and 3). Nevertheless, in the ferromagnetic phase the magnetization distribution itself can be
multifractal. This is shown in figure 4. The inset shows the enlarged part of the map leading
to a multifractal distribution for positive magnetization (a symmetric counterpart exists for
negative magnetization).

3.4. Dynamical properties

The stationary phase transition &, equation (26), is from a physical point of view a
dynamic freezingransition characterized by an extremely slow dynamics. As shown below,
the relaxation of the map—and hence of all time-dependent correlation functions—diverges
exponentially fast close to the critical field.. Consider first the mean-field map close but
above the critical field, as illustrated in figure 6.

The iteration along the upper branch alone corresponds to type | intermittency and has
been discussed previously in the theory of chaotic maps [27, 32, 33]. As usual, the function
m’ = tanh(K'm + Ho) will be approximated up to quadratic order close to the poirlt H,)

wherem' = :t,/’%l is the point where the upper branch touches tangentiallynthe m

. . . t .
line. Introducing the new variable = R One obtains
—m

Ho— H,
Xn+l = X, + menZ + TC

Requiring that=5—==, x2, and% have the same order of magnitude implies thatnd
hencen must scale as

. (M) (29)

(28)

K

which is the standard result for one-dimensional maps [27].

However, the probability to stay on the upper branch of the map fmnsecutive steps is
exponentially small. Assume that at time= 0 one injectsVy points at then = —1 location.
In order to move upwards, the points can use only the upper branch and must pass through the
‘intermittent tunnel’. Once a trajectory flips to the lower branch, it is set back to the entrance
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Figure 7. The Markov process representing the passage through an intermittent tunnel. Each arrow
indicates a transition probability (g

of the tunnel. If a point has passed through the tunnel, it might eventually return to the lower
part but has a similar chance of being trapped on the symmetric upper part. This dynamics can
be modelled by the Markov process shown in figure 7.

By iterating the corresponding stochastic matrix (or by full induction) it is easy to see

that the stationary probability of being at sitds given byp, = 21 Therefore, assuming
quasi-equilibrium, the escape rate is estimated as
N(t) = —%N(z) (30)

wherea is a constant of order O(1) related to the probability of return after escape. The
relaxation timer corresponding to equation (30) diverges as
e 2 el (31)
a
where we have used equation (29), ans a constant. Hence, the relaxation time diverges
exponentially fast close to the phase transition. Beldwthe slow dynamics is due to the
average escape time (fractal dimension) from the central repellor.
Another interesting dynamic phenomenon is the hysteresis of the RDIM. Here one adds
a harmonic part to the external driving field:

H(t) = H(t) + AcosQt. (32)

The resulting hysteresis distribution is shown in figure 8. The evolution of 500 initial values
was tracked for 2000 iterations. We close here the discussion of the mean-field (or infinite-
dimensional) RDIM. We expect many of the features discussed here to be valid in three-
dimensional systems and to a lesser extent in two dimensions.

4. Summary and discussion

In this paper we have discussed the behaviour of a spin system with short-range interactions in
arandom external field coupled to the order parameter. If the distribution of the external field is
discrete, the resulting dynamics is chaotic due to the competition between different equilibrium
states of the system. We proposed a general formalism for calculating the stationary and
dynamical properties of randomly driven systems and applieditto the Ising model. Inthe mean-
field approximation the stationary distribution of the magnetization displays a spontaneous
symmetry-breaking phase atlow fields and temperatures. The transition between the disordered
and the ferromagnetic phase is first order and corresponds to a tangential bifurcation of the
underlying map. Close to the phase transition the characteristic relaxation time diverges
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Figure 8. Hysteresis in the mean-field model. Magnetizatio(n) versus the external driving field
H(t), see equation (32), for paramet%s: % =1,K=2andQ = %}.

exponentially—leading to dynamic freezing. Depending on the control parameters, the
stationary magnetization distribution can be a normal, multifractal or fat-fractal distribution in
both the disordered and ordered phases.

Ourinterestin this problem arises mainly in connection to understanding the nature of open
systems with many degrees of freedom. Information processing systems, natural or artificial,
have a macroscopic number of connected elements subject to external stimuli changing faster
than the characteristic thermal relaxation time. As illustrated by the simple example presented
in this paper, such systems might develop stationary states far from equilibrium which might be
many times more effective in dynamically storing information than simple thermal equilibrium
states. In this respect it would be also of interest to consider other choices for the driving field
distribution. Continuous distributions, for instance, might lead to very different stationary
phase transitions than the one discussed here.

In [34] we shall discuss the RDIM in one and two dimensions.

Acknowledgments

This article was initiated during PR’s visit at the Hong Kong University of Science and
Technology. PR thanks the staff of the Department of Physics and in particular N Cue,
K'Y Szeto and M Wong for their warm hospitality. This work was partly supported by the
DFG through SFB 517.

References

[1] Simanyi N and Sasz D 1996 The Boltzmann-Sinai hypothesis for hard ball systBreprint mp-
arcmath.utexas.edu-#96-80

[2] Gallavotti G and Cohe E G D1995 Dynamical ensembles in nonequilibrium statistical mechaigs. Rev.
Lett. 742694

[3] Gallavotti G and Cohe E G D1995 Dynamical ensembles in stationary stdteStat. Phys80931

[4] Bruinsma R and Aeppli G 1983 One-dimensional Ising model in a randomAieys. Rev. Let60 1494



74

5]
(7]
(8]
E]
(20]
(11]

(12]
(13]

[14]
(15]

(16]
(17]
(18]
(19]
(20]
(21]
(22]
(23]
(24]
(25]
[26]
(27]
(28]
[29]

(30]
(31]

(32]
(33]

(34]

J Hausmann and P Ra

Aeppli G and Bruinsma R 1983 Linear response theory and the one-dimensional Ising ferromagnet in a random
field Phys. LettA 97117

Gyorgyi G and Rujin P 1984 Strange attractors in disordered systembys. C: Solid State Phyk7 4207

Evangela S N 1987 Fractal measures in the random-field Ising madehys. C: Solid State Phy201L511

Szépfalusy P and Behn U 1987 Calculation of a characteristic fractal dimension in the one-dimensional random
Ising modelZ. PhysB 65337

Bene J and Sapfalusy P 1988 Multifractal properties in the one-dimensional random-field Ising rRbgsl|
Rev.A 371703

Behn U and ZagrebnoV A 1987 One-dimensional Markovian-field Ising model: Physical properties and
characteristics of the discrete stochastic mappirfghys. A: Math. Ger212151

Behn U and ZagrebnoV A 1987 One-dimensional random field Ising model and discrete stochastic mappings
J. Stat. Phys47939

Bene J 1989 Multifractal properties of a class of non-natural measures as an eigenvalue ptojdeRevA
392090

Rao M, Krishnamurth H R and Pandit R 1990 Magnetic hysteresis in two spin systeimys. Re\B 42 856

Tomé T and de Oliveira M J 1990 Dynamic phase transition in the kinetic Ising model under a time-dependent
oscillating fieldPhys. RevA 414251

Lo W S and Pelcovit R A 1990 Ising model in a time-dependent magnetic fibgls. RevA 427471

Sengupta S, Marathe Y and Puri S 1992 Cell-dynamic simulation of magnetic hysteresis in two-dimensional
Ising systenPhys. RewB 457828

Rikvold P A, Tomita H, Miyashita S and SideS W 1994 Metastable lifetimes in a kinetic Ising model:
dependence on field and system $tg/s. RevE 495080

Sides S W, Ramos R A, RikwIP A and Novotny M A 1996 Response of kinetic Ising model system to
oscillating external fields: Amplitude and frequency dependdnégpl. Phys79 6482

Rujan P and Hausmann J 1997 Stationary properties of a randomly driven Ising ferrofahgsaeRev. Let?9
3339

Bayreuther G, Bruno P, Lugert G and Turtur C 1989 Magnetic aftereffect in ultrathin ferromagnetiPfijras
Rev.B 407399

Pommier J, Meyer P, &hissard G, FeérJ, Bruno P and Renard D 1990 Magnetization reversal in ultrathin
ferromagnetic films with perpendicular anisotropy: domain observaitiys. Rev. Let65 2054

Allensbach R, Stampanoni M and Bischof A 1990 Magnetic domains in thin epitaxial Co/Au(111Pilyss
Rev. Lett653344

He Y-L and Wang G-C 1993 Observation of dynamic scaling of magnetic hysteresis in ultrathin ferromagnetic
Fe/Au(001) filmsPhys. Rev. LetZ02336

Felderhd B U 1970Rep. Math. Physl 1

Siggia E D 1977 Pseudospin formulation of kinetic Ising moddtys. RevB 16 2319

Barnsley M F and Demko S 1985 Iterated function systems and the global construction of flacteldR. Soc.
A 399243

Chang S-J and Wright J 1981 Transitions and distribution functions for chaotic syBterasRevA 231419

Glaube R J 1963 Time-dependent statistics of the Ising mdd®&lath. Phys4 294

Pomeau Y and Manneville P 1980 Intermittent transition to turbulence in dissipative dynamic sgstemmsin.
Math. Phys74 189

Acharyya M 1998 Nonequilibrium phase transition in the kinetic Ising model: Dynamical symmetry breaking
by randomly varying magnetic fielhys. RevE 58 174

Radons G 1993 A new transition for projections of multifractal measures and randond nsaas Phys72227

HenscheéH G E andProcaccia | 198®hysicaD 8 435

Tsarg K'Y 1986 Dimensionality of strange attractors determined analytié¥ilys. Rev. Let67 1390

Tang C and Kohmoto M 1986 Global scaling properties of the spectrum for a quasiperiodidiBgler equation
Phys. Re\B 342041

Grossmann S and Horner H 1985 Long time tail correlations in discrete chaotic dyriarfiogs B 60 79

Gyodrgyi G and Sepfalusy P 1988 Relaxation processes in chaotic states of one-dimensionacteaphys.
Hung.64 33

Hausmann J and Raj P 1999 The randomly driven Ising ferromagnet: Il. One and two dimen3iéty/s. A:
Math. Gen3275



